New syntheses of the $\Delta_{5, 22}$ CIS and trans C_{26} and C_{27} sterols dimethyl-24 chola-5, 22 dien-3 β OL and cholesta-5,22 dien-3 β OL

A. METAYER, A. QUESNEAU-THIERRY and M. BARBIER

Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette, France

(Received in UK 6 December 1973; accepted for publication 11 January 1974)

Previous syntheses of the title sterols have lead to mixtures of their $\Delta_{22} \underline{\text{cis}}$ and $\underline{\text{trans}}$ isomers^{1,2}. We wish to report now³ new syntheses of the two compounds and the separation of the isomers <u>7a-8a</u> and <u>11a-12a</u>.

Decarboxylation⁴ of 3β -acetoxy cholenic acid <u>1</u> by treatment with Pb(OAc)₄:Cu(OAc)₂ gives the olefin <u>2</u> with a 55 % yield (TLC⁵ pentane-EtOAc 19:1, Rf 0.78) ; IR, MS and NMR are in agreement with structure <u>2</u>. After saponification, the tosylate (TsCl/Py) is prepared and rearranged to the 3, 5-cyclosteroid <u>3a</u> (5 min. reflux Bz./Al₂O₃)⁶; this product is purified by Al₂O₃ column chromatography (TLC pentane-EtOAc 19:1 Rf 0.33). After acetylation (Ac₂O/Py), <u>3b</u> shows the expected molecular ion at m/e 370 and fragmentations at 328 M-15-C₂H₃, 313 M-(C₄H₇ + 2H), 255 M-60-C₄H₇, NMR⁷ and IR see table. Ozonisation of <u>3b</u> in CH₂Cl₂/Py 9:1 at -70°C⁸ affords the aldehyde <u>4</u> (yield 90 %, Rf 0.60 TLC⁵ in pentane-Et-OAc 9:1) ; immediately used without purification.

A Wittig reaction⁹ is performed with <u>4</u> and isobutyltriphenylphosphonium bromide (heptane-ether 2:3, BuLi, 12 h. at 20°C and 24 h. at 60°C). After reacetylation of the reaction mixture, the two isomers <u>5b</u> and <u>6b</u> are isolated (TLC Al₂O₃/AgNO₃, hexane-EtOAc 25:2 Rf 0.90 and 0.80). The saponification gives <u>5a</u> and <u>6a</u> (molecular ion at m/e 370, m/e 300 M-(C₅H₉ + H), 271 M-(C₇H₁₃ + 2H) which are rearranged to the 3β-acetoxy $\Delta_{5,22}$ <u>trans</u> and <u>cis</u> sterols <u>7b</u> and <u>8b</u> (Al₂O₃/AcOH 5 min. reflux, yield 100 %⁶). The <u>trans</u> sterol acetate <u>7b</u> is characterized by spectrometric methods ; MS m/e 362 M-60, 282 M-60-(C₅H₉ + H), 255 M-60-C₇H₁₃ ; NMR. IR/KBr, see table ; (TLC⁵ pentane-AcOEt 7:3 Rf 0.85). The <u>cis</u> sterol acetate <u>8b</u> shows a mass spectrum similar to the one of <u>7b</u> ; NMR and IR/KBr, see table ; (TLC⁵ same Rf as for <u>7b</u>). Saponification of <u>7b</u> and <u>8b</u> gives the sterols <u>7a</u> and <u>8a</u> : (<u>7a trans</u> mp. 122-124°C, plates, MeOH ; (α)^{20°} = - 31 [±] 2° CHCl₃ ; <u>8a cis</u>, mp. 163-166°C, needles, MeOH ; (α)^{20°} = - 63 [±] 2° CHCl₃). The yield of <u>7a + 8a</u> is 12 % from acetoxycholenic acid <u>1</u> ; the two isomers are obtained in the ratio 1:2.

A Wittig reaction between $\underline{4}$ and isoamyltriphenylphosphonium iodide (heptane-ether 2:3, PhLi, as above) leads to the <u>trans</u> and <u>cis</u> C₂₇ 3, 5-cyclosteroids <u>9b</u> and <u>10b</u> isolated after reacetylation of the reaction mixture (Al₂O₃/AgNO₃ 3:1 preparative TLC in hexane-

benzene-ether 75:11:1, Rf <u>9b</u> 0.70 and <u>10b</u> 0.60). The <u>cis</u> or <u>trans</u> compounds give the molecular ion at m/e 426; 366 M-60, 255 M-60-C₈H₅. IR/KBr confirm the <u>trans</u> and <u>cis</u> stereochemistry; NMR see table. The corresponding 3β-acetoxy $\Delta_{5,22}$ <u>trans</u> and <u>cis</u> sterols <u>11b</u> and <u>12b</u> are obtained by rearrangement as above⁶; (IR, MS). The free sterols <u>11a</u> and <u>12a</u> are separated after saponification (<u>11a trans</u> mp. 132-135°C, plates, MeOH; (α)_D^{20°} = -35[±] 2° CHCl₃, <u>12a cis</u> mp. 135-137°C, needles, MeOH, (α)_D^{20°} = -53[±] 2° CHCl₃.

Separations of $\Delta_{5, 22}$ <u>cis</u> and <u>trans</u> isomers of sterols is thus possible by AgNO₃ chromatography of the corresponding i-steroids. Separations of Δ_{22} <u>cis</u> and <u>trans</u> sterols having a saturated cyclic squeleton has been previously reported^{10, 11}. The identification of the isolated isomers is not possible from mass or NMR spectrographical data; the coupling of protons at C-22 C-23 is quite similar and the coupling constants are small; in all cases the AB <u>cis</u> system is found at higher fields. With the Δ_5 compounds, only the signals given by protons at C-22 C-23 <u>cis</u> can be distinguished from those of the ethylenic proton at C-6. Finally, the identification of the isomers is only possible from the IR; as previously observed ^{10, 11} the <u>cis</u> isomers have shorter Rf values on Al₂O₃/AgNO₃ TLC.

NMR (\$)										IR cm ⁻¹
с ₃ -н с ₄ -н ₂		18-CH ₃ 19-CH ₃		21-CH ₃	25, 26-CH ₃ or 26, 27-CH ₃	с ₂₂ -н с ₂₃ -н		с ₆ -н		
<u></u>		8	8	d 6, 5Hz	d 6, 5Hz	S	J	S	J	
<u>3b</u>	0.5 0.3	0.75	1.00	1.03		ABC 4.80 ₂₃ 4.95 ₂₂ 4.61 ₂₃	<u>trans</u> 3Hz <u>cis</u> 2.5Hz	4.43 t	3Hz	1640 910
<u>7b</u> (<u>trans</u>)		0.70	1.02	1.01	0.94	AB 5.25	3.5Hz	5.35 q	5-1Hz	980
8b (cis)		0.70	1.02	0.94	0.90	AB 4.95	2Hz	5.32 q	5-lHz	770 750
<u>9b</u> (trans)	0.5 0.3	0.75	1.00	1.02	0.88	AB 5.22	3Hz	4.5 t	2Hz	980
<u>10</u> b (cis)	0.5 0.3	0.75	1.00	0.95	0.88	AB 5.17	2Hz	4.5 t	2Hz	760 735

No. 7

NMR⁷ spectrum of cis dimethyl-24 chola-5,22 dien 38 ol 88

Acknowledgment

Thanks are due to Professor E. Lederer for his interest and to Dr G. Nominé, Roussel-Uclaf, for a gift of cholenic acid.

a:R=H ; b:R=Ac=CH3CO

Footnotes and references

- 1.M. Fryberg, A.C. Oehlschlager and A.M. Unrau, Chem. Comm., 1194 (1971).
- 2. W. Bergmann and J.P. Dusza, J. Org. Chem., 23, 1245 (1958).
- 3.10th communication on $C_{26}^{}$ sterols ; for the preceding see¹².
- 4. A.S. Narula and S. Dev, Tetrahedron, 27, 1119 (1971).
- 5. Thin layer chromatography (TLC) on SiO2 film Schleicher-Schull.
- 6. A. Métayer and M. Barbier, Bull. Soc. Chim., 3625 (1972).
- 7.5 CDCl₂, internal TMS ; Varian A-60.
- 8. D.H.R. Barton, T. Shioiri and D.A. Widdowson, Chem. Comm., 939 (1972).
- 9. A. Métayer, Thèse de Dr. de 3ème cycle, Orsay University 1973.
- 10. A. Métayer and M. Barbier, C.R. Acad. Sci. Paris, 276. Série C, 201 (1973).
- 11. A. Métayer and M. Barbier, Chem. Comm., 424 (1973).
- 12. J.P. Férezou, M. Devys, J.P. Allais and M. Barbier, Phytochemistry, in press.